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Formaldehyde is one of the most important C1 electrophiles in
organic synthesis. Although hydroxymethylation of enolates with
formaldehyde provides an efficient method to introduce a C1
functional group at theR-position of carbonyl groups, there have
been few successful examples of catalytic asymmetric hydroxym-
ethylation that satisfy synthetic utility in terms of both yield and
selectivity for a wide range of substrates.1 To achieve such reactions,
Lewis acid-catalyzed hydroxymethylation of silicon enolates2 is
promising. The reactions proceed regioselectively, and excellent
substrate generality and synthetic efficiency can be expected.3 As
for the source of formaldehyde, use of a commercial aqueous
solution of formaldehyde is the most convenient, because tedious
and harmful procedures to generate formaldehyde monomer from
formaldehyde oligomers such as paraformaldehyde and trioxane
can be avoided.4 Although we have previously reported the use of
an aqueous solution of formaldehyde for hydroxymethylation of
silicon enolates,5 it is still difficult to realize catalytic asymmetric
versions of this reaction. Quite recently, the catalytic asymmetric
hydroxymethylation of silicon enolates in aqueous solvents was
first achieved by our group6 and Yamamoto et al.7 However, in
both cases, the enantioselectivities were moderate, and there still
remained several issues to be resolved. To achieve a higher level
of yields and selectivity in this reaction, development of a new
catalytic system is required. We report here that a novel chiral
scandium complex has realized highly enantioselective, catalytic
hydroxymethylation of silicon enolates with a formaldehyde aque-
ous solution.

First, we screened various chiral ligands in scandium triflate (Sc-
(OTf)3)-catalyzed asymmetric hydroxymethylation using a com-
mercial aqueous solution (35%) of formaldehyde, because Sc(OTf)3

is one of the strongest Lewis acids that can be used for aldol
reactions in aqueous solvents.8 It was found that19 was an effective
ligand and afforded high selectivity in the reaction of silicon enolate
2 in H2O/EtOH (Table 1, entry 1). To increase the yield and
selectivity, we investigated the reaction conditions further (Table
1). When alcoholic cosolvents were used, lower yields were
obtained because rapid hydrolysis of the silicon enolate occurred
(entries 2-4). On the other hand, water-soluble aprotic cosolvents
such as THF, 1,2-dimethoxyethane (DME), 1,4-dioxane, and
acetonitrile afforded high yields (entries 5-8). When water without
organic cosolvents was used, the reaction proceeded sluggishly
(entry 9). Under higher concentration and at lower temperature in
H2O/DME, the reaction proceeded in high yield with high selectivity
even using 10 mol % of the catalyst (entry 11). Five mol % of the
catalyst also worked well (entry 12).

Under the optimized conditions as shown in Table 1, entry 11,
we next examined other substrates and were delighted to find that
various substrates could be successfully employed (Table 2). Silicon
enolates having an ethyl or a siloxy group on theR-position of the
carbonyl groups gave the products with high selectivity (entries 2
and 3). Moreover, it is noted that asymmetric quaternary carbons

were constructed with high selectivities (entries 6-11 and 13-
15). Unfortunately, in the cases where rapid hydrolysis of silicon
enolates occurred, the reactions resulted in low yields (entries 12,
16). In some cases, addition of 2,6-di-tert-butylpyridine slightly
improved the yield (entry 3).10,11

To obtain some information on the chiral Sc complex, X-ray
crystal structural analysis was performed. Single crystals that were
suitable for X-ray analysis were obtained from a1-ScBr3 complex
(Figure 1).12 The complex adopts a pentagonal bipyramidal
structure13 in which the hydroxy groups of1 coordinate to Sc3+ in
a tetradentate manner. Formation of this type of structure may be
a key for obtaining high enantioselectivity. In addition, on consider-
ing the absolute configurations of some of the hydroxymethylated

Table 1. Optimization of Reaction Conditionsa

entry solvent X Y time (h) yieldb (%) eec (%)

1 H2O/EtOH) 1/9 20 24 1.5 32 87
2 H2O/MeOH) 1/9 20 24 1 14 81
3 H2O/PrOH) 1/9 20 24 2 35 62
4 H2O/iPrOH) 1/9 20 24 11 53 80
5 H2O/THF ) 1/9 20 24 2 78 73
6 H2O/DME ) 1/9 20 24 6 81 83
7 H2O/1,4-dioxane) 1/9 20 24 15 86 84
8 H2O/CH3CN ) 1/9 20 24 15 87 80
9 H2O 20 24 67 5 66

10 H2O/DME ) 1/9 20 24 21 82 90
11 H2O/DME ) 1/9 10 12 24 80 90
12 H2O/DME ) 1/9 5 6 24 67 86

a Reaction was performed at 0°C (entries 1-9) or -20 °C (entries 10-
12). The amounts of formaldehyde were 10 equiv (entries 1-10) or 5 equiv
(entries 11 and 12). The reaction was performed in 0.18 M (entries 1-10)
or 0.36 M (entries 11 and 12) concentrations.bIsolated yield after silica gel
chromatography.cEe was determined by chiral HPLC analysis.

Figure 1. [1‚ScBr2‚H2O]+ moiety in the X-ray structure of [1‚ScBr2‚H2O]‚
Br‚H2O. Hydrogen atoms are omitted for clarity.
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products6,14 shown in Tables 1 and 2, it is clear that formaldehyde
tends to react with the same face of the silicon enolates in no relation
to the substituents at theR-position.

In conclusion, we have achieved successful catalytic asymmetric
hydroxymethylation of silicon enolates using a1-Sc(OTf)3 com-
plex as the catalyst. In this reaction, a commercial aqueous solution
of formaldehyde can be used, and as a result, this process can be
conducted very easily and safely. This new catalytic system will
provide not only a useful method to synthesize optically active
R-hydroxymethylated carbonyl compounds but also a guide to
various kinds of catalytic asymmetric C-C bond-forming reactions
in aqueous media.15
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Table 2. Catalytic Asymmetric Hydroxymethylation of Silicon
Enolatesa

a Reaction was performed in 0.36 M concentration.bIsolated yield after
silica gel chromatography.cEe was determined by chiral HPLC analysis.
Absolute configuration is shown in parentheses.d2,6-Di-tert-butylpyridine
(100 mol %) was added.eT ) -30 °C. fT ) -40 °C. gEe was determined
by chiral HPLC analysis of its benzoate.hReaction was performed in H2O/
CH3CN.
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